| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
|
| Thm* b: . b Prop |
|
decidable | Def Dec(P) == P P |
|
| Thm* A:Prop. Dec(A) Prop |
|
iff | Def P  Q == (P  Q) & (P  Q) |
|
| Thm* A,B:Prop. (A  B) Prop |
|
int_seg | Def {i..j } == {k: | i k < j } |
|
| Thm* m,n: . {m..n } Type |
|
nat | Def == {i: | 0 i } |
|
| Thm* Type |
|
not | Def A == A  False |
|
| Thm* A:Prop. ( A) Prop |