Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assertDef  b == if b True else False fi
Thm*  b:b  Prop
composeDef  (f o g)(x) == f(g(x))
Thm*  A,B,C:Type, f:(BC), g:(AB). f o g  AC
Thm*  A,B,C:Type, f:(B inj C), g:(A inj B). f o g  A inj C
Thm*  f:(B onto C), g:(A onto B). f o g  A onto C
iffDef  P  Q == (P  Q) & (P  Q)
Thm*  A,B:Prop. (A  B Prop
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
is_discreteDef  A Discrete == x,y:A. Dec(x = y)
Thm*  A:Type. (A Discrete)  Prop
natDef   == {i:| 0i }
Thm*    Type
surjection_typeDef  A onto B == {f:(AB)| Surj(ABf) }
Thm*  A,B:Type. A onto B  Type
surjectDef  Surj(ABf) == b:Ba:Af(a) = b
Thm*  A,B:Type, f:(AB). Surj(ABf Prop

About:
boolifthenelseassertintnatural_numbersetapplyfunctionuniverse
equalmemberpropimpliesandfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc