| | Some definitions of interest. |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| compose | Def (f o g)(x) == f(g(x)) |
| | | Thm* A,B,C:Type, f:(B C), g:(A B). f o g A C |
| | | Thm* A,B,C:Type, f:(B inj C), g:(A inj B). f o g A inj C |
| | | Thm* f:(B onto C), g:(A onto B). f o g A onto C |
|
| iff | Def P  Q == (P  Q) & (P  Q) |
| | | Thm* A,B:Prop. (A  B) Prop |
|
| int_seg | Def {i..j } == {k: | i k < j } |
| | | Thm* m,n: . {m..n } Type |
|
| is_discrete | Def A Discrete == x,y:A. Dec(x = y) |
| | | Thm* A:Type. (A Discrete) Prop |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
|
| surject | Def Surj(A; B; f) == b:B. a:A. f(a) = b |
| | | Thm* A,B:Type, f:(A B). Surj(A; B; f) Prop |