| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
compose | Def (f o g)(x) == f(g(x)) |
| | Thm* A,B,C:Type, f:(B![](FONT/dash.png) C), g:(A![](FONT/dash.png) B). f o g A![](FONT/dash.png) C |
| | Thm* A,B,C:Type, f:(B inj C), g:(A inj B). f o g A inj C |
| | Thm* f:(B onto C), g:(A onto B). f o g A onto C |
|
iff | Def P ![](FONT/if_big.png) Q == (P ![](FONT/eq.png) Q) & (P ![](FONT/if_big.png) Q) |
| | Thm* A,B:Prop. (A ![](FONT/if_big.png) B) Prop |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
is_discrete | Def A Discrete == x,y:A. Dec(x = y) |
| | Thm* A:Type. (A Discrete) Prop |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
surject | Def Surj(A; B; f) == b:B. a:A. f(a) = b |
| | Thm* A,B:Type, f:(A![](FONT/dash.png) B). Surj(A; B; f) Prop |