Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
eq_intDef  i=j == if i=j true ; false fi
Thm*  i,j:. (i=j 
fun_over_stDef  x:A st P(x)B(x) == x:{x:AP(x) }B(x)
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
inv_funs_2Def  InvFuns(A;B;f;g) == (x:Ag(f(x)) = x) & (y:Bf(g(y)) = y)
Thm*  f:(AB), g:(BA). InvFuns(A;B;f;g Prop
notDef  A == A  False
Thm*  A:Prop. (A Prop

About:
boolbfalsebtrueintint_eqsetapplyfunction
universeequalmemberpropimpliesandfalseall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc