Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
seq_consDef  [xxs](i) == if i=0 x else xs(i-1) fi
Thm*  A:Type, n:x:Axs:((n-1)A). [xxs nA
eq_intDef  i=j == if i=j true ; false fi
Thm*  i,j:. (i=j 
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
nat_plusDef   == {i:| 0<i }
Thm*    Type

About:
boolbfalsebtrueifthenelseintnatural_numbersubtractint_eq
less_thansetapplyfunctionuniversememberall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc