Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
sigma_to_unionDef  sigma_to_union(e) == e/i,u. if i=0 inl(u) else inr(u) fi
Thm*  A,B:Type. sigma_to_union  (i:2if i=0 A else B fi)(A+B)
eq_intDef  i=j == if i=j true ; false fi
Thm*  i,j:. (i=j 
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
inv_funs_2Def  InvFuns(A;B;f;g) == (x:Ag(f(x)) = x) & (y:Bf(g(y)) = y)
Thm*  f:(AB), g:(BA). InvFuns(A;B;f;g Prop
union_to_sigmaDef  union_to_sigma(e) == InjCase(ea. <0,a>; b. <1,b>)
Thm*  A,B:Type. union_to_sigma  (A+B)(i:2if i=0 A else B fi)

About:
pairspreadproductboolbfalsebtrueifthenelseintnatural_number
int_equnioninlinrdecide
setapplyfunctionuniverseequalmemberpropandall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc