Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
next_nat_pairDef  next_nat_pair(xy) == xy/x,y. if y=0 <0,x+1> else <x+1,y-1> fi
Thm*  next_nat_pair  
eq_intDef  i=j == if i=j true ; false fi
Thm*  i,j:. (i=j 
natDef   == {i:| 0i }
Thm*    Type
nequalDef  a  b  T == a = b  T
Thm*  A:Type, x,y:A. (x  y Prop

About:
pairspreadproductboolbfalsebtrueifthenelse
intnatural_numberaddsubtractint_eqsetapply
functionuniverseequalmemberpropall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc