Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
prev_nat_pairDef  prev_nat_pair(xy) == xy/x,y. if x=0 <y-1,0> else <x-1,y+1> fi
Thm*  prev_nat_pair  {xy:()| xy = <0,0>   }
eq_intDef  i=j == if i=j true ; false fi
Thm*  i,j:. (i=j 
natDef   == {i:| 0i }
Thm*    Type
notDef  A == A  False
Thm*  A:Prop. (A Prop

About:
pairspreadproductboolbfalsebtrueifthenelseint
natural_numberaddsubtractint_eqsetapply
functionuniverseequalmemberpropimpliesfalseall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc