| Some definitions of interest. |
|
inv_funs_2 | Def InvFuns(A;B;f;g) == ( x:A. g(f(x)) = x) & ( y:B. f(g(y)) = y) |
| | Thm* f:(A![](FONT/dash.png) B), g:(B![](FONT/dash.png) A). InvFuns(A;B;f;g) Prop |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
next_nat_pair | Def next_nat_pair(xy) == xy/x,y. if y= 0 <0,x+1> else <x+1,y-1> fi |
| | Thm* next_nat_pair ![](FONT/nat.png) ![](FONT/x_big.png) ![](FONT/nat.png) ![](FONT/dash.png) ![](FONT/then_med.png) ![](FONT/nat.png) ![](FONT/x_big.png) ![](FONT/nat.png) |
|
not | Def A == A ![](FONT/eq.png) False |
| | Thm* A:Prop. ( A) Prop |
|
prev_nat_pair | Def prev_nat_pair(xy) == xy/x,y. if x= 0 <y-1,0> else <x-1,y+1> fi |
| | Thm* prev_nat_pair {xy:(![](FONT/nat.png) ![](FONT/x_big.png) )| xy = <0,0> ![](FONT/nat.png) ![](FONT/x_big.png) }![](FONT/dash.png) ![](FONT/then_med.png) ![](FONT/nat.png) ![](FONT/x_big.png) ![](FONT/nat.png) |