Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
inv_funs_2Def  InvFuns(A;B;f;g) == (x:Ag(f(x)) = x) & (y:Bf(g(y)) = y)
Thm*  f:(AB), g:(BA). InvFuns(A;B;f;g Prop
natDef   == {i:| 0i }
Thm*    Type
next_nat_pairDef  next_nat_pair(xy) == xy/x,y. if y=0 <0,x+1> else <x+1,y-1> fi
Thm*  next_nat_pair  
notDef  A == A  False
Thm*  A:Prop. (A Prop
prev_nat_pairDef  prev_nat_pair(xy) == xy/x,y. if x=0 <y-1,0> else <x-1,y+1> fi
Thm*  prev_nat_pair  {xy:()| xy = <0,0>   }

About:
pairspreadproductifthenelseint
natural_numberaddsubtractsetapplyfunctionuniverse
equalmemberpropimpliesandfalseall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc