| Some definitions of interest. |
|
next_nat_pair | Def next_nat_pair(xy) == xy/x,y. if y= 0 <0,x+1> else <x+1,y-1> fi |
| | Thm* next_nat_pair         |
|
prev_nat_pair | Def prev_nat_pair(xy) == xy/x,y. if x= 0 <y-1,0> else <x-1,y+1> fi |
| | Thm* prev_nat_pair {xy:(  )| xy = <0,0>   }     |
|
eq_int | Def i= j == if i=j true ; false fi |
| | Thm* i,j: . (i= j)  |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
nequal | Def a b T == a = b T |
| | Thm* A:Type, x,y:A. (x y) Prop |