Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
natDef   == {i:| 0i }
Thm*    Type
nat_to_nat_pairDef  nat_to_nat_pair(i) == next_nat_pair{i}(<0,0>)
Thm*  nat_to_nat_pair  
nequalDef  a  b  T == a = b  T
Thm*  A:Type, x,y:A. (x  y Prop
next_nat_pairDef  next_nat_pair(xy) == xy/x,y. if y=0 <0,x+1> else <x+1,y-1> fi
Thm*  next_nat_pair  

About:
pairspreadproductifthenelseintnatural_numberaddsubtract
setapplyfunctionuniverseequalmemberpropall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc