| Some definitions of interest. |
|
eqfun_p | Def IsEqFun(T;eq) == x,y:T. (x eq y)  x = y |
| | Thm* T:Type, eq:(T T  ). IsEqFun(T;eq) Prop |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
surjection_type | Def A onto B == {f:(A B)| Surj(A; B; f) } |
| | Thm* A,B:Type. A onto B Type |
|
surject | Def Surj(A; B; f) == b:B. a:A. f(a) = b |
| | Thm* A,B:Type, f:(A B). Surj(A; B; f) Prop |