(4steps total)
PrintForm
Definitions
Lemmas
DiscreteMath
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
card
split
end
sum
intseg
family
1
1.
a
:
2.
b
:
3.
B
: {
a
..
b
}
Type
4.
a
<
b
(
i
:{
a
..
b
}
B
(
i
)) ~ ((
i
:{
a
..(
b
-1)
}
B
(
i
))+
B
(
b
-1))
By:
Use:[
c
:=
b
-1]
Rewrite by
Thm*
a
,
b
:
,
c
:{
a
...
b
},
B
:({
a
..
b
}
Type).
Thm*
(
i
:{
a
..
b
}
B
(
i
)) ~ ((
i
:{
a
..
c
}
B
(
i
))+(
i
:{
c
..
b
}
B
(
i
)))
Generated subgoal:
1
((
i
:{
a
..(
b
-1)
}
B
(
i
))+(
i
:{(
b
-1)..
b
}
B
(
i
))) ~ ((
i
:{
a
..(
b
-1)
}
B
(
i
))+
B
(
b
-1))
2
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(4steps total)
PrintForm
Definitions
Lemmas
DiscreteMath
Sections
DiscrMathExt
Doc