PfPrintForm Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Here we gloss the proof of Thm*  InvFuns(A;B;f;g Bij(ABf)

First note the key definitions:

Def  InvFuns(A;B;f;g) == (x:Ag(f(x)) = x) & (y:Bf(g(y)) = y)

Def  Bij(ABf) == Inj(ABf) & Surj(ABf)

It turns out that each conjunct of the conclusion will follow from a conjunct of the premise, namely,

(x:Ag(f(x)) = x Inj(ABf), and

(y:Bf(g(y)) = y Surj(ABf).

To show Inj(ABf) is just to show that

f(a1) = f(a2 a1 = a2, which is so since

f(a1) = f(a2 g(f(a1)) = g(f(a2)), and g cancels f by assumption,

so, a1 = a2.

To show Surj(ABf) is just to show that

b:Ba:Af(a) = b

which is witnessed by g(b) thus:

b:Bf(g(b)) = b, which follows from our assumption.

QED

About:
applyfunctionuniverseequalimpliesandallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

PfPrintForm Definitions DiscreteMath Sections DiscrMathExt Doc