(3steps total)
PrintForm
Definitions
DiscreteMath
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Being mutual inverses is symmetric.
At:
inv
funs
2
sym
A
,
B
:Type,
f
:(
A
B
),
g
:(
B
A
). InvFuns(
A
;
B
;
f
;
g
)
InvFuns(
B
;
A
;
g
;
f
)
By:
Def of InvFuns(<A>;<B>;<f>;<g>)
Generated subgoals:
1
1.
A
: Type
2.
B
: Type
3.
f
:
A
B
4.
g
:
B
A
5.
x
:
A
.
g
(
f
(
x
)) =
x
6.
y
:
B
.
f
(
g
(
y
)) =
y
7.
x
:
B
f
(
g
(
x
)) =
x
1
step
2
1.
A
: Type
2.
B
: Type
3.
f
:
A
B
4.
g
:
B
A
5.
x
:
A
.
g
(
f
(
x
)) =
x
6.
y
:
B
.
f
(
g
(
y
)) =
y
7.
y
:
A
g
(
f
(
y
)) =
y
1
step
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(3steps total)
PrintForm
Definitions
DiscreteMath
Sections
DiscrMathExt
Doc