exponent Sections AutomataTheory Doc

Def as @ bs == Case of as; nil bs ; a.as' a.(as' @ bs) (recursive)

Thm* R:(Alph*Alph*Prop), n:, L:(Alph*), m:. (x:Alph*. R(x,x)) & (x,y:Alph*. R(x,y) R(y,x)) & (x,y,z:Alph*. R(x,y) & R(y,z) R(x,z)) & (x,y,z:Alph*. R(x,y) R((z @ x),z @ y)) & (w:(nAlph*). l:Alph*. i:n. R(l,w(i))) & (v:(mAlph*). l:Alph*. L(l) (i:m. R(l,v(i)))) & Fin(Alph) (x,y:Alph*. Dec(l:Alph*. L(l @ x) = L(l @ y))) auto2_lemma_8

Thm* R:(Alph*Alph*Prop), n:, L:(Alph*), m:. (x:Alph*. R(x,x)) & (x,y:Alph*. R(x,y) R(y,x)) & (x,y,z:Alph*. R(x,y) & R(y,z) R(x,z)) & (x,y,z:Alph*. R(x,y) R((z @ x),z @ y)) & (w:(nAlph*). l:Alph*. i:n. R(l,w(i))) & (v:(mAlph*). l:Alph*. L(l) (i:m. R(l,v(i)))) & Fin(Alph) (x,y:Alph*. Dec(l:Alph*. L(l @ x) = L(l @ y))) auto2_lemma_7

Thm* R:(Alph*Alph*Prop), n:. (x:Alph*. R(x,x)) & (x,y:Alph*. R(x,y) R(y,x)) & (x,y,z:Alph*. R(x,y) & R(y,z) R(x,z)) & (x,y,z:Alph*. R(x,y) R((z @ x),z @ y)) & (w:(nAlph*). l:Alph*. i:n. R(l,w(i))) (a,b,c:Alph*. a':Alph*. ||a'|| < nn & R((a @ b),a' @ b) & R((a @ c),a' @ c)) auto2_lemma_4

Thm* R:(Alph*Alph*Prop), n:. (x:Alph*. R(x,x)) & (x,y:Alph*. R(x,y) R(y,x)) & (x,y,z:Alph*. R(x,y) & R(y,z) R(x,z)) & (x,y,z:Alph*. R(x,y) R((z @ x),z @ y)) & (w:(nAlph*). l:Alph*. i:n. R(l,w(i))) (a,b,c:Alph*. ||a||nn (a':Alph*. ||a'|| < ||a|| & R((a @ b),a' @ b) & R((a @ c),a' @ c))) auto2_lemma_3

In prior sections: list 1 list 3 autom