Thm* n:
, m:
, k:
(n
m).
l:
n*. ||l|| = m & en(l) = k en_surj
Thm* n:
, l:
n*. en(l)
(n
||l||) en_bound
Thm* n:
, l:
n*. en(l) < (n
||l||) en_ubound
Thm* n:
. Fin(Alph)
Fin({l:(Alph*)| ||l|| = n }) auto2_lemma_5
Thm* R:(Alph*
Alph*
Prop), n:
.
(
x:Alph*. R(x,x))
& (
x,y:Alph*. R(x,y)
R(y,x))
& (
x,y,z:Alph*. R(x,y) & R(y,z)
R(x,z))
& (
x,y,z:Alph*. R(x,y)
R((z @ x),z @ y))
& (
w:(
n
Alph*).
l:Alph*.
i:
n. R(l,w(i)))
(
a,b,c:Alph*.
a':Alph*. ||a'|| < n
n & R((a @ b),a' @ b) & R((a @ c),a' @ c))
auto2_lemma_4
Thm* R:(Alph*
Alph*
Prop), n:
.
(
x:Alph*. R(x,x))
& (
x,y:Alph*. R(x,y)
R(y,x))
& (
x,y,z:Alph*. R(x,y) & R(y,z)
R(x,z))
& (
x,y,z:Alph*. R(x,y)
R((z @ x),z @ y))
& (
w:(
n
Alph*).
l:Alph*.
i:
n. R(l,w(i)))
(
a,b,c:Alph*.
||a||
n
n
(
a':Alph*. ||a'|| < ||a|| & R((a @ b),a' @ b) & R((a @ c),a' @ c)))
auto2_lemma_3
Thm* n:
, m:
, l1,l2:
n*. ||l1|| = m & ||l2|| = m
en(l1) = en(l2)
l1 = l2
en_inj
Thm* l:T*. ||l|| = 0
l = nil zero_length_imp_nil
In prior sections: list 1 finite sets list 3 autom