Thm*
q:![]()
. (
q*) ~
list_1_1_nat
Thm*
q:![]()
, a:
.
l:
q*. enum(l) = a enum_surj
Thm*
q:![]()
, l1,l2:
q*. enum(l1) = enum(l2) ![]()
l1 = l2 enum_inj
Thm*
q:![]()
, a:
.
n:
.
(q
n
)
a <
(q
n+1
) geom_series_limit
Thm*
q:![]()
, n1,n2:
, r1:
(q
n1), r2:
(q
n2).
(q
n1
)+r1 =
(q
n2
)+r2 ![]()
n1 = n2 & r1 = r2
geom_unique
Thm*
q:![]()
, n:
, i:![]()
, r1:
(q
n), r2:
(q
n+i).
(q
n
)+r1 =
(q
n+i
)+r2 ![]()
False
geom_n_unique
Thm*
q,n:
, i:![]()
.
(q
n
)+(q
n)![]()
(q
n+i
) geom_speed_lbound
Thm*
n:![]()
, m:
, k:
(n
m).
l:
n*. ||l|| = m & en(l) = k en_surj
Thm*
R:(Alph*![]()
Alph*![]()
Prop), n:![]()
, L:(Alph*![]()
![]()
), m:
.
(
x:Alph*. R(x,x))
& (
x,y:Alph*. R(x,y) ![]()
R(y,x))
& (
x,y,z:Alph*. R(x,y) & R(y,z) ![]()
R(x,z))
& (
x,y,z:Alph*. R(x,y) ![]()
R((z @ x),z @ y))
& (
w:(
n![]()
Alph*).
l:Alph*.
i:
n. R(l,w(i)))
& (
v:(
m![]()
Alph*).
l:Alph*. L(l) ![]()
(
i:
m. R(l,v(i))))
& Fin(Alph)
![]()
(
x,y:Alph*. Dec(
l:Alph*. L(l @ x) = L(l @ y)))
auto2_lemma_8
Thm*
R:(Alph*![]()
Alph*![]()
Prop), n:![]()
, L:(Alph*![]()
![]()
), m:
.
(
x:Alph*. R(x,x))
& (
x,y:Alph*. R(x,y) ![]()
R(y,x))
& (
x,y,z:Alph*. R(x,y) & R(y,z) ![]()
R(x,z))
& (
x,y,z:Alph*. R(x,y) ![]()
R((z @ x),z @ y))
& (
w:(
n![]()
Alph*).
l:Alph*.
i:
n. R(l,w(i)))
& (
v:(
m![]()
Alph*).
l:Alph*. L(l) ![]()
(
i:
m. R(l,v(i))))
& Fin(Alph)
![]()
(
x,y:Alph*. Dec(
l:Alph*.
L(l @ x) = L(l @ y)))
auto2_lemma_7
Thm*
R:(Alph*![]()
Alph*![]()
Prop), n:![]()
.
(
x:Alph*. R(x,x))
& (
x,y:Alph*. R(x,y) ![]()
R(y,x))
& (
x,y,z:Alph*. R(x,y) & R(y,z) ![]()
R(x,z))
& (
x,y,z:Alph*. R(x,y) ![]()
R((z @ x),z @ y))
& (
w:(
n![]()
Alph*).
l:Alph*.
i:
n. R(l,w(i)))
![]()
(
a,b,c:Alph*.
a':Alph*. ||a'|| < n
n & R((a @ b),a' @ b) & R((a @ c),a' @ c))
auto2_lemma_4
Thm*
R:(Alph*![]()
Alph*![]()
Prop), n:![]()
.
(
x:Alph*. R(x,x))
& (
x,y:Alph*. R(x,y) ![]()
R(y,x))
& (
x,y,z:Alph*. R(x,y) & R(y,z) ![]()
R(x,z))
& (
x,y,z:Alph*. R(x,y) ![]()
R((z @ x),z @ y))
& (
w:(
n![]()
Alph*).
l:Alph*.
i:
n. R(l,w(i)))
![]()
(
a,b,c:Alph*.
||a||
n
n ![]()
(
a':Alph*. ||a'|| < ||a|| & R((a @ b),a' @ b) & R((a @ c),a' @ c)))
auto2_lemma_3
Thm*
m:![]()
, n:
. 0 < (m
n) exp_non_zero
Thm*
m:![]()
. (0
m) = 0 exp_zero
Thm*
n:![]()
, m:
, l1,l2:
n*. ||l1|| = m & ||l2|| = m ![]()
en(l1) = en(l2) ![]()
l1 = l2
en_inj
Thm*
a:
, n:![]()
, k:
. a < n
k ![]()
(a
n) < k div_lt_lbound
Thm*
n:![]()
, r1,r2:
n, q1,q2:
. r1+q1
n = r2+q2
n ![]()
r1 = r2 & q1 = q2
rem_quo_unique
In prior sections: int 1 int 2 finite sets