Thms finite sets Sections AutomataTheory Doc

absval Def |i| == if 0i i else -i fi

Thm* x:. |x|

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

lelt Def i j < k == ij & j < k

le Def AB == B < A

Thm* i,j:. ij Prop

nat_plus Def == {i:| 0 < i }

Thm* Type

le_int Def ij == j < i

Thm* i,j:. ij

not Def A == A False

Thm* A:Prop. (A) Prop

lt_int Def i < j == if i < j true ; false fi

Thm* i,j:. i < j

bnot Def b == if b false else true fi

Thm* b:. b

About:
!abstractionifthenelsebfalsebtrueallbool
memberlessintimpliesfalseprop
setless_thannatural_numberuniverseandminus