Thms finite sets Sections AutomataTheory Doc

length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)

Thm* A:Type, l:A*. ||l||

Thm* ||nil||

nat Def == {i:| 0i }

Thm* Type

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* A:Prop. (A) Prop

About:
!abstractionimpliesfalseallpropmemberless_thanint
setnatural_numberuniverserecursive_def_noticelist_indaddlistnil