Thm*
f:(T![]()
Prop). (
t:T. Dec(f(t))) ![]()
(
g:(T![]()
![]()
).
t:T. f(t) ![]()
g(t))
decid_is_comp
Thm* Fin(T) ![]()
(
x,y:T. Dec(x = y)) fin_is_decid
Thm*
f:(T![]()
S).
Fin(S) & (
s:S. Dec(
t:T. f(t) = s)) ![]()
Fin(x,y:T//(f(x) = f(y)))
inv_of_fin_is_fin
Thm*
R:(S![]()
T![]()
Prop).
(
s:S. Dec(
t:T. R(s,t))) ![]()
(
f:({s:S|
t:T. R(s,t) }![]()
T).
s:{s:S|
t:T. R(s,t) }. R(s,f(s)))
set_function
Thm*
B:(T![]()
Prop). Fin(T) & (
t:T. Dec(B(t))) ![]()
Fin({t:T| B(t) })
finite_decidable_subset
Thm*
n:
, T:Type, B:(T![]()
Prop).
(
n ~ T) & (
t:T. Dec(B(t))) ![]()
(
m:
.
m ~ {t:T| B(t) })
fin_dec_fin