WhoCites Definitions formula rank Sections ClassicalProps(jlc) Doc

Who Cites Formula?
Formula Def Formula == rec(formula.Var+formula+(formulaformula)+(formulaformula)+(formulaformula))
Thm* Formula Type
Var Def Var == Atom
Thm* Var Type
f_or Def pq == inr(inr(inr(inl( < p,q > ))))
Thm* p,q:Formula. pq Formula
fand Def pq == inr(inr(inl( < p,q > )))
Thm* p,q:Formula. pq Formula
fimp Def pq == inr(inr(inr(inr( < p,q > ))))
Thm* p,q:Formula. pq Formula
fnot Def p == inr(inl(p))
Thm* x:Formula. x Formula
formula_rank Def == (letrec formula_rank f = case f:x 0;p (formula_rank(p)+1);pq (formula_rank(p)+formula_rank(q)+1);pq (formula_rank(p)+formula_rank(q)+1);pq (formula_rank(p)+formula_rank(q)+1); )
Thm* Formula
formula_case Def case F:x varC(x);p1 notC(p1);p2p3 andC(p2;p3);p4p5 orC(p4;p5);p6p7 impC(p6;p7); == InjCase(F; x. varC(x); F. InjCase(F; p1. notC(p1); F. InjCase(F; x. x/p2,p3. andC(p2;p3); F. InjCase(F; x. x/p4,p5. orC(p4;p5), x/p6,p7. impC(p6;p7)))))
fvar Def F == inl(F)
Thm* x:Var. x Formula
nat Def == {i:| 0i }
Thm* Type
letrec_body Def = b == b
letrec_arg Def x b(x) (x) == b(x)
letrec Def (letrec f b(f)) == b((letrec f b(f)) ) (recursive)
le Def AB == B < A
Thm* i,j:. (ij) Prop
not Def A == A False
Thm* A:Prop. (A) Prop

About:
pairspreadproductintnatural_numberaddless_thanatomunioninlinr
decidesetapplyfunction
recursive_def_noticerecuniversememberpropimpliesfalseall
!abstraction

WhoCites Definitions formula rank Sections ClassicalProps(jlc) Doc