Origin Definitions Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
fun_1
Nuprl Section: fun_1

Selected Objects
IntroductionIntroductory Remarks
THMeta_conv f:(AB). (x.f(x)) = f
deftlambda (x:Tb(x))(x) == b(x)
defidentity Id(x) == x
deftidentity Id == Id
defcompose (f o g)(x) == f(g(x))
THMcomp_assoc f:(AB), g:(BC), h:(CD). h o (g o f) = (h o g) o f  AD
THMcomp_id_l f:(AB). Id o f = f
THMcomp_id_r f:(AB). f o Id = f
definv_funs InvFuns(ABfg) == g o f = Id & f o g = Id
THMsq_stable__inv_funs f:(AB), g:(BA). SqStable(InvFuns(ABfg))
defone_one_corr A ~~ B == f:(AB), g:(BA). InvFuns(ABfg)
definject Inj(ABf) == a1,a2:Af(a1) = f(a2 B  a1 = a2
defsurject Surj(ABf) == b:Ba:Af(a) = b
defbiject Bij(ABf) == Inj(ABf) & Surj(ABf)
THMax_choice Q:(ABProp). (x:Ay:BQ(x,y))  (f:(AB). x:AQ(x,f(x)))
THMdep_ax_choice B:(AType), Q:(x:AB(x)Type).
(x:Ay:B(x). Q(x,y))  (f:(x:AB(x)). x:AQ(x,f(x)))
THMbij_imp_exists_inv f:(AB). Bij(ABf (g:(BA). InvFuns(ABfg))
THMfun_with_inv_is_bij f:(AB), g:(BA). InvFuns(ABfg Bij(ABf)
THMbij_iff_1_1_corr (f:(AB). Bij(ABf))  (A ~~ B)
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Origin Definitions Sections StandardLIB Doc