Selected Objects
Introduction | Introductory Remarks |
THM | eta_conv |
f:(AB). (x.f(x)) = f |
def | tlambda |
(x:T. b(x))(x) == b(x) |
def | identity |
Id(x) == x |
def | tidentity |
Id == Id |
def | compose |
(f o g)(x) == f(g(x)) |
THM | comp_assoc |
f:(AB), g:(BC), h:(CD). h o (g o f) = (h o g) o f AD |
THM | comp_id_l |
f:(AB). Id o f = f |
THM | comp_id_r |
f:(AB). f o Id = f |
def | inv_funs |
InvFuns(A; B; f; g) == g o f = Id & f o g = Id |
THM | sq_stable__inv_funs |
f:(AB), g:(BA). SqStable(InvFuns(A; B; f; g)) |
def | one_one_corr |
A ~~ B == f:(AB), g:(BA). InvFuns(A; B; f; g) |
def | inject |
Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2 |
def | surject |
Surj(A; B; f) == b:B. a:A. f(a) = b |
def | biject |
Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f) |
THM | ax_choice |
Q:(ABProp). (x:A. y:B. Q(x,y)) (f:(AB). x:A. Q(x,f(x))) |
THM | dep_ax_choice |
B:(AType), Q:(x:AB(x)Type).
(x:A. y:B(x). Q(x,y)) (f:(x:AB(x)). x:A. Q(x,f(x))) |
THM | bij_imp_exists_inv |
f:(AB). Bij(A; B; f) (g:(BA). InvFuns(A; B; f; g)) |
THM | fun_with_inv_is_bij |
f:(AB), g:(BA). InvFuns(A; B; f; g) Bij(A; B; f) |
THM | bij_iff_1_1_corr |
(f:(AB). Bij(A; B; f)) (A ~~ B) |