Thm* k1,k2: . f:(( k1+ k2)  (k1+k2)). Inj( k1+ k2; (k1+k2); f) | [union_cardinality1] |
Thm* n: , f:( n  ). increasing(f;n)  ( i: n, j: i. f(j) (f(i))) | [increasing-implies2] |
Thm* k: , f,g:( k  ), p:( k  ). sum(if p(i) f(i)+g(i) else f(i) fi | i < k) = sum(f(i) | i < k)+sum(if p(i) g(i) else 0 fi | i < k) | [sum-ite] |
Thm* k,b: , f:( k  ). ( x: k. b f(x))  b k sum(f(x) | x < k) | [sum_lower_bound] |
Thm* k,b: , f:( k  ). ( x: k. f(x) b)  sum(f(x) | x < k) b k | [sum_bound] |
Thm* k: , f,g:( k  ). ( x: k. f(x) g(x))  sum(f(x) | x < k) sum(g(x) | x < k) | [sum_le] |
Thm* n: , P:( (n+1) Prop). ( x: (n+1). P(x))  P(0) & ( x: n. P(x+1)) | [all-nsub-add1] |
Thm* s:T List. no_repeats(T;s)  ( f:( ||s|| T). Inj( ||s||; T; f)) | [no_repeats_inj] |
Thm* i,j: , k: (j-i). upto(i;j)[k] = i+k | [select_upto] |
Thm* j: , i: j. ||upto(i;j)|| = j-i  | [length_upto] |
Thm* i,j: . upto(i;j) {i..j } List | [upto_wf] |
Thm* L:T List, P:(T  ). ( x L.P(x))  ( i: ||L||. P(L[i])) | [assert_l_bexists] |
Thm* L:T List, P:(T  ). ( x L.P(x))  ( i: ||L||. P(L[i])) | [assert_l_ball] |