(9steps total) PrintForm Definitions Lemmas graph 1 1 Sections Graphs Doc

At: assert l bexists

T:Type, L:T List, P:(T). (xL.P(x)) (i:||L||. P(L[i]))

By:
InductionOnList
THEN
Reduce 0
THEN
Try (RW assert_pushdownC 0)
THEN
ExRepD


Generated subgoals:

11. T: Type
2. L: T List
3. u: T
4. v: T List
5. P:(T). (xv.P(x)) (i:||v||. P(v[i]))
6. P: T
7. P(u) (xv.P(x))
i:(||v||+1). P([u / v][i])
3 steps
 
21. T: Type
2. L: T List
3. u: T
4. v: T List
5. P:(T). (xv.P(x)) (i:||v||. P(v[i]))
6. P: T
7. i: (||v||+1)
8. P([u / v][i])
P(u) (xv.P(x))
5 steps

About:
listconsboolassertnatural_numberadd
functionuniverseorall
exists

(9steps total) PrintForm Definitions Lemmas graph 1 1 Sections Graphs Doc