Definitions graph 1 1 Sections Graphs Doc

Some definitions of interest.
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
l_before Def x before y l == [x; y] l
Thm* T:Type, l:T List, x,y:T. x before y l Prop
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
sublist Def L1 L2 == f:(||L1||||L2||). increasing(f;||L1||) & (j:||L1||. L1[j] = L2[(f(j))] T)
Thm* T:Type, L1,L2:T List. L1 L2 Prop

About:
listconsconsnillist_ind
natural_numberless_thanapplyfunctionrecursive_def_noticeuniverseequal
memberpropimpliesandallexists!abstraction

Definitions graph 1 1 Sections Graphs Doc