Definitions graph 1 1 Sections Graphs Doc

Some definitions of interest.
l_before Def x before y l == [x; y] l
Thm* T:Type, l:T List, x,y:T. x before y l Prop
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
map Def map(f;as) == Case of as; nil nil ; a.as' [(f(a)) / map(f;as')] (recursive)
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A

About:
listconsconsnillist_ind
intnatural_numberaddless_thansetapplyfunction
recursive_def_noticeuniversememberpropimpliesall
!abstraction

Definitions graph 1 1 Sections Graphs Doc