Definitions graph 1 1 Sections Graphs Doc

Some definitions of interest.
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
l_disjoint Def l_disjoint(T;l1;l2) == x:T. ((x l1) & (x l2))
Thm* T:Type, l,l':T List. l_disjoint(T;l;l') Prop
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop

About:
listconslist_indless_thanrecursive_def_notice
universeequalmemberpropimpliesandallexists!abstraction

Definitions graph 1 1 Sections Graphs Doc