Definitions graph 1 1 Sections Graphs Doc

Some definitions of interest.
reverse Def rev(as) == Case of as; nil nil ; a.as' rev(as') @ [a] (recursive)
Thm* T:Type, as:T List. rev(as) T List
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
no_repeats Def no_repeats(T;l) == i,j:. i < ||l|| j < ||l|| i = j l[i] = l[j] T
Thm* T:Type, l:T List. no_repeats(T;l) Prop

About:
listconsconsnillist_indless_than
recursive_def_noticeuniverseequalmemberpropimpliesandall
!abstraction

Definitions graph 1 1 Sections Graphs Doc