Definitions graph 1 1 Sections Graphs Doc

Some definitions of interest.
inject Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2
Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
no_repeats Def no_repeats(T;l) == i,j:. i < ||l|| j < ||l|| i = j l[i] = l[j] T
Thm* T:Type, l:T List. no_repeats(T;l) Prop
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A

About:
listnillist_indintnatural_number
addless_thansetapplyfunctionrecursive_def_noticeuniverse
equalmemberpropimpliesallexists!abstraction

Definitions graph 1 1 Sections Graphs Doc