Definitions graph 1 1 Sections Graphs Doc

Some definitions of interest.
div_floor Def a n == if 0aa n ;((-a) rem n)=0-((-a) n) else -((-a) n)+-1 fi
Thm* a:, n:. (a n)
modulus Def a mod n == if 0aa rem n ;((-a) rem n)=00 else n-((-a) rem n) fi
Thm* a:, n:. (a mod n)
eq_int Def i=j == if i=j true ; false fi
Thm* i,j:. (i=j)
nat_plus Def == {i:| 0 < i }
Thm* Type
not Def A == A False
Thm* A:Prop. (A) Prop

About:
boolbfalsebtrueifthenelseintnatural_numberminusadd
subtractdivideremainderint_eqless_thanset
universememberpropimpliesfalseall!abstraction

Definitions graph 1 1 Sections Graphs Doc