(3steps total) PrintForm Definitions Lemmas graph 1 1 Sections Graphs Doc

At: inverse-biject

A,B:Type, f:(AB). Bij(A; B; f) (g:(BA). Bij(B; A; g) & InvFuns(A; B; f; g))

By:
Auto
THEN
AllHyps (h. FwdThru Thm* f:(AB). Bij(A; B; f) (g:(BA). InvFuns(A; B; f; g)) [h])
THEN
ExRepD
THEN
AllHyps (h.FwdThru Thm* f:(AB), g:(BA). InvFuns(A; B; f; g) InvFuns(B; A; g; f) [h])


Generated subgoal:

11. A: Type
2. B: Type
3. f: AB
4. Bij(A; B; f)
5. g: BA
6. InvFuns(A; B; f; g)
7. InvFuns(B; A; g; f)
g:(BA). Bij(B; A; g) & InvFuns(A; B; f; g)
2 steps

About:
functionuniverseimpliesandallexists

(3steps total) PrintForm Definitions Lemmas graph 1 1 Sections Graphs Doc