(14steps total) PrintForm Definitions graph 1 1 Sections Graphs Doc

At: primrec list accum 2 1 1 1 2

1. n:
2. 0 < n
3. f,x:Top. primrec(n-1;x;f) ~ list_accum(i,y.f(y,i);x;upto(0;n-1))
4. f: Top
5. x:Top. primrec(n-1;x;f) ~ list_accum(i,y.f(y,i);x;upto(0;n-1))
6. x: Top
7. primrec(n-1;x;f) ~ list_accum(i,y.f(y,i);x;upto(0;n-1))
8. n = 0
9. i:
10. 0 < i
11. i-1 < n (z:Top. (f(n-1,list_accum(i,y.f(y,i);z;upto(n-1-(i-1);n-1)))) ~ list_accum(i,y.f(y,i);z;upto(n-1-(i-1);n)))
i < n (z:Top. (f(n-1,list_accum(i,y.f(y,i);z;upto(n-1-i;n-1)))) ~ list_accum(i,y.f(y,i);z;upto(n-1-i;n)))

By:
ParallelOp -1
THEN
RecUnfold `upto` 0
THEN
RepeatFor 2 (SplitOnConclITE THEN (Try (Complete Auto)) THEN (Reduce 0))


Generated subgoal:

111. i < n
12. z:Top. (f(n-1,list_accum(i,y.f(y,i);z;upto(n-1-(i-1);n-1)))) ~ list_accum(i,y.f(y,i);z;upto(n-1-(i-1);n))
13. n-1-i < n-1
14. n-1-i < n
z:Top. (f(n-1,list_accum(i,y.f(y,i);f(n-1-i,z);upto(n-1-i+1;n-1)))) ~ list_accum(i,y.f(y,i);f(n-1-i,z);upto(n-1-i+1;n))
1 step

About:
intnatural_numberaddsubtractless_thanapplyequalsqequaltopimpliesall

(14steps total) PrintForm Definitions graph 1 1 Sections Graphs Doc