At:
rem mul11
1.
x:
2.
y:
3.
n:
4.
x = (x n)n+(x rem n)
5.
|x rem n| < |n|
6.
(x rem n) < 0 x < 0
7.
(x rem n) > 0 x > 0
8.
y = (y n)n+(y rem n)
9.
|y rem n| < |n|
10.
(y rem n) < 0 y < 0
11.
(y rem n) > 0 y > 0
12.
(x rem n)(y rem n) = (((x rem n)(y rem n)) n)n+(((x rem n)(y rem n)) rem n)
13.
|((x rem n)(y rem n)) rem n| < |n|
14.
(((x rem n)(y rem n)) rem n) < 0 (x rem n)(y rem n) < 0
15.
(((x rem n)(y rem n)) rem n) > 0 (x rem n)(y rem n) > 0
xy = ((x n)(y n)n+(x n)(y rem n)+(x rem n)(y n)+(((x rem n)(y rem n)) n))n+(((x rem n)(y rem n)) rem n)
By:
Subst (xy = ((x n)n+(x rem n))((y n)n+(y rem n))) 0
THEN
All ArithSimp
Generated subgoals: