Thm* G:Graph. ( x,y:Vertices(G). Dec(x = y))  ( s:traversal(G). paren(Vertices(G);s)  no_repeats(Vertices(G)+Vertices(G);s)  df-traversal(G;s)  depthfirst-traversal(G;s)) | [paren-df-traversal] |
Thm* s:(T+T) List. paren(T;s)  no_repeats(T+T;s)  ( s1,s2,s3:(T+T) List, x:T. s = (s1 @ [inl(x)] @ s2 @ [inr(x)] @ s3)  paren(T;s2)) | [paren_interval] |
Thm* s:(T+T) List. paren(T;s)  ( i:T, s1,s2:(T+T) List. s = (s1 @ [inl(i)] @ s2)  (inr(i) s2)) | [paren_order1] |
Thm* s',s3:(T+T) List. paren(T;s')  paren(T;s3)  paren(T;s3 @ s') | [append_paren] |
Thm* s':(T+T) List. paren(T;s')  ( i:T. (inr(i) s')  (inl(i) s')) | [paren_balance2] |
Thm* s':(T+T) List. paren(T;s')  ( i:T. (inl(i) s')  (inr(i) s')) | [paren_balance1] |
Thm* P:(((T+T) List) Prop). P(nil)  ( s1,s2:(T+T) List. P(s1)  P(s2)  paren(T;s1)  paren(T;s2)  P(s1 @ s2))  ( s:(T+T) List, t:T. P(s)  paren(T;s)  P([inl(t)] @ s @ [inr(t)]))  ( s:(T+T) List. paren(T;s)  P(s)) | [paren_induction] |
Def dfsl-traversal(the_graph;L;s) == df-traversal(the_graph;s) & ( i:Vertices(the_graph). (inl(i) s)  L-the_graph- > *i) & (( i:Vertices(the_graph). L-the_graph- > *i  non-trivial-loop(the_graph;i))  ( L1,L2:Vertices(the_graph) List. L = (L1 @ L2)  ( s1,s2:traversal(the_graph). s = (s2 @ s1) traversal(the_graph) & paren(Vertices(the_graph);s1) & paren(Vertices(the_graph);s2) & ( j:Vertices(the_graph). ((inl(j) s1)  L1-the_graph- > *j) & ((inl(j) s2)  L2-the_graph- > *j & L1-the_graph- > *j))))) | [dfsl-traversal] |