Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
gt Def i > j == j < i
Thm* i,j:. (i > j) Prop
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
int_nzero Def == {i:| i 0 }
Thm* Type
nat Def == {i:| 0i }
Thm* Type
prime Def prime(a) == a = 0 & (a ~ 1) & (b,c:. (a | (bc)) (a | b) (a | c))
Thm* a:. prime(a) Prop
not Def A == A False
Thm* A:Prop. (A) Prop

About:
intnatural_numbermultiplyless_thansetuniverseequalmember
propimpliesandorfalseall!abstraction

Definitions graph 1 2 Sections Graphs Doc