Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
connect Def x-the_graph- > *y == p:Vertices(the_graph) List. path(the_graph;p) & p[0] = x & last(p) = y
Thm* For any graph x,y:V. x-the_graph- > *y Prop
path Def path(the_graph;p) == 0 < ||p|| & (i:(||p||-1). p[i]-the_graph- > p[(i+1)])
Thm* For any graph p:V List. path(the_graph;p) Prop
edge Def x-the_graph- > y == e:Edges(the_graph). Incidence(the_graph)(e) = < x,y >
Thm* For any graph x,y:V. x-the_graph- > y Prop
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}

About:
pairproductproductlistnatural_numberaddsubtractless_thanapplyfunction
universeequalmembertoppropandallexists!abstraction

Definitions graph 1 2 Sections Graphs Doc