Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
connect Def x-the_graph- > *y == p:Vertices(the_graph) List. path(the_graph;p) & p[0] = x & last(p) = y
Thm* For any graph x,y:V. x-the_graph- > *y Prop
decidable Def Dec(P) == P P
Thm* A:Prop. Dec(A) Prop
edge Def x-the_graph- > y == e:Edges(the_graph). Incidence(the_graph)(e) = < x,y >
Thm* For any graph x,y:V. x-the_graph- > y Prop
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}
iff Def P Q == (P Q) & (P Q)
Thm* A,B:Prop. (A B) Prop
not Def A == A False
Thm* A:Prop. (A) Prop

About:
pairproductproductlistdecidablenatural_numberapplyfunctionuniverseequal
membertoppropimpliesandorfalseallexists!abstraction

Definitions graph 1 2 Sections Graphs Doc