Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
list-list-connect Def L1-G- > *L2 == (xL2.L1-G- > *x)
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}
iseg Def l1 l2 == l:T List. l2 = (l1 @ l)
Thm* T:Type, l1,l2:T List. l1 l2 Prop
l_all Def (xL.P(x)) == x:T. (x L) P(x)
Thm* T:Type, L:T List, P:(TProp). (xL.P(x)) Prop
l_exists Def (xL.P(x)) == x:T. (x L) & P(x)
Thm* T:Type, L:T List, P:(TProp). (xL.P(x)) Prop
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop

About:
productproductlistless_thanfunctionuniverseequalmember
toppropimpliesandallexists!abstraction

Definitions graph 1 2 Sections Graphs Doc