Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
dfl-traversal Def dfl-traversal(the_graph;L;s) == (i:Vertices(the_graph), s1,s2:traversal(the_graph). s = (s1 @ [inr(i)] @ s2) traversal(the_graph) (j:Vertices(the_graph). (inr(j) s2) (inl(j) s2) j-the_graph- > *i)) & (j:Vertices(the_graph). (inr(j) s) L-the_graph- > *j) & (i:Vertices(the_graph), s1,s2:traversal(the_graph). (j:Vertices(the_graph). i-the_graph- > *j non-trivial-loop(the_graph;j)) s = (s1 @ [inl(i)] @ s2) traversal(the_graph) L-the_graph- > *i)
list-list-connect Def L1-G- > *L2 == (xL2.L1-G- > *x)
traversal Def traversal(G) == (Vertices(G)+Vertices(G)) List
Thm* For any graph Traversal Type
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
graph Def Graph == v:Typee:Type(evv)Top
Thm* Graph Type{i'}

About:
productproductlistconsnilunioninlinrfunction
universeequalmembertopimpliesandall!abstraction

Definitions graph 1 2 Sections Graphs Doc