| Some definitions of interest. |
|
dfl-traversal | Def dfl-traversal(the_graph;L;s) == ( i:Vertices(the_graph), s1,s2:traversal(the_graph). s = (s1 @ [inr(i)] @ s2) traversal(the_graph)  ( j:Vertices(the_graph). (inr(j) s2)  (inl(j) s2)  j-the_graph- > *i)) & ( j:Vertices(the_graph). (inr(j) s)  L-the_graph- > *j) & ( i:Vertices(the_graph), s1,s2:traversal(the_graph). ( j:Vertices(the_graph). i-the_graph- > *j  non-trivial-loop(the_graph;j))  s = (s1 @ [inl(i)] @ s2) traversal(the_graph)  L-the_graph- > *i) |
|
list-list-connect | Def L1-G- > *L2 == ( x L2.L1-G- > *x) |
|
traversal | Def traversal(G) == (Vertices(G)+Vertices(G)) List |
| | Thm* For any graph
Traversal Type |
|
gr_v | Def Vertices(t) == 1of(t) |
| | Thm* t:Graph. Vertices(t) Type |
|
graph | Def Graph == v:Type e:Type (e v v) Top |
| | Thm* Graph Type{i'} |