| Some definitions of interest. |
|
biject | Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f) |
| | Thm* A,B:Type, f:(A B). Bij(A; B; f) Prop |
|
inv_funs | Def InvFuns(A; B; f; g) == g o f = Id & f o g = Id |
| | Thm* A,B:Type, f:(A B), g:(B A). InvFuns(A; B; f; g) Prop |
|
compose | Def (f o g)(x) == f(g(x)) |
| | Thm* A,B,C:Type, f:(B C), g:(A B). f o g A C |
|
compose2 | Def (f1,f2) o g(x) == g(x)/x,y. < f1(x),f2(y) > |
| | Thm* A,B,C,B',C':Type, g:(A B C), f1:(B B'), f2:(C C'). (f1,f2) o g A B' C' |
|
gr_e | Def Edges(t) == 1of(2of(t)) |
| | Thm* t:Graph. Edges(t) Type |
|
gr_f | Def Incidence(t) == 1of(2of(2of(t))) |
| | Thm* t:Graph. Incidence(t) Edges(t) Vertices(t) Vertices(t) |
|
gr_v | Def Vertices(t) == 1of(t) |
| | Thm* t:Graph. Vertices(t) Type |
|
graph | Def Graph == v:Type e:Type (e v v) Top |
| | Thm* Graph Type{i'} |
|
tidentity | Def Id == Id |
| | Thm* A:Type. Id A A |