Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
compose Def (f o g)(x) == f(g(x))
Thm* A,B,C:Type, f:(BC), g:(AB). f o g AC
compose2 Def (f1,f2) o g(x) == g(x)/x,y. < f1(x),f2(y) >
Thm* A,B,C,B',C':Type, g:(ABC), f1:(BB'), f2:(CC'). (f1,f2) o g AB'C'
decidable Def Dec(P) == P P
Thm* A:Prop. Dec(A) Prop
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
tidentity Def Id == Id
Thm* A:Type. Id AA

About:
pairspreadspreadspreadproductproductdecidableapply
functionuniversememberproporall!abstraction

Definitions graph 1 2 Sections Graphs Doc