Definitions graph 1 2 Sections Graphs Doc

Some definitions of interest.
decidable Def Dec(P) == P P
Thm* A:Prop. Dec(A) Prop
divides Def b | a == c:. a = bc
Thm* a,b:. (a | b) Prop
nat_plus Def == {i:| 0 < i }
Thm* Type
not Def A == A False
Thm* A:Prop. (A) Prop

About:
decidableintnatural_numbermultiplyless_thansetuniverseequalmember
propimpliesorfalseallexists!abstraction

Definitions graph 1 2 Sections Graphs Doc