At:
paren induction
2
1
1.
T: Type
2.
P: ((T+T) List)
Prop
3.
P(nil)
4.
s1,s2:(T+T) List. P(s1) 
P(s2) 
paren(T;s1) 
paren(T;s2) 
P(s1 @ s2)
5.
s:(T+T) List, t:T. P(s) 
paren(T;s) 
P([inl(t)] @ s @ [inr(t)])
6.
n:
7.
s: (T+T) List
8.
s1:(T+T) List. ||s1|| < ||s|| 
paren(T;s1) 
P(s1)
9.
t: T
10.
s': (T+T) List
11.
s = ([inl(t)] @ s' @ [inr(t)])
12.
paren(T;s')
||s'|| < ||s||
By:
HypSubst -2 0
THEN
RWW
Thm*
as,bs:T List. ||as @ bs|| = ||as||+||bs||
0
THEN
Reduce 0
Generated subgoals:
None
About: