(3steps total) PrintForm Definitions Lemmas graph 1 3 Sections Graphs Doc

At: dfsl-induction1

For any graph the_obj:GraphObject(the_graph), P:((V List)TraversalProp). P(nil,nil) (L:V List, s:Traversal, i:V. P(L,s) P(L @ [i],dfs(the_obj;s;i))) (L:V List. P(L,dfsl(the_obj;L)))

By: (Auto THEN (Unfold `dfsl` 0) THEN (MoveToConcl -1) THEN InductionOnLength THEN (AutoBoolCase null(L))) THENL [(HypSubst -1 0) THEN (Reduce 0) ;((Inst Thm* L:T List. 0 < ||L|| (x:T, L':T List. L = (L' @ [x])) [Vertices(the_graph);L]) THENA (Auto THEN (BackThru Thm* L:T List. L = nil 0 < ||L||))) THEN ExRepD THEN (HypSubst -1 0)]

Generated subgoal:

11. the_graph: Graph
2. the_obj: GraphObject(the_graph)
3. P: (Vertices(the_graph) List)traversal(the_graph)Prop
4. P(nil,nil)
5. L:Vertices(the_graph) List, s:traversal(the_graph), i:Vertices(the_graph). P(L,s) P(L @ [i],dfs(the_obj;s;i))
6. n:
7. L: Vertices(the_graph) List
8. L1:Vertices(the_graph) List. ||L1|| < ||L|| P(L1,list_accum(s,i.dfs(the_obj;s;i);nil;L1))
9. L = nil
10. x: Vertices(the_graph)
11. L': Vertices(the_graph) List
12. L = (L' @ [x])
P(L' @ [x],list_accum(s,i.dfs(the_obj;s;i);nil;L' @ [x]))
2 steps

About:
listconsnilnatural_numberless_thanfunction
universeequalpropimpliesallexists

(3steps total) PrintForm Definitions Lemmas graph 1 3 Sections Graphs Doc