Thm* t:A. t = t  True | [eq_refl] |
Thm* False  True | [not_false] |
Thm* True  False | [not_true] |
Thm* x:A. ( y:A. x = y)  True | [exists_explicit_2] |
Thm* x:A. ( y:A. y = x)  True | [exists_explicit_1] |
Thm* ( x:A. False)  False | [exists_false] |
Thm* A:S. ( x:A. False)  False | [all_false] |
Thm* ( x:A. True)  True | [all_true] |
Thm* (True  P)  P | [true_imp] |
Thm* (False  P)  True | [false_imp] |
Thm* (P  True)  True | [imp_true] |
Thm* (P  False)  P | [imp_false] |
Thm* P & False  False | [and_false] |
Thm* False & P  False | [false_and] |
Thm* P & True  P | [and_true] |
Thm* True P  True | [true_or] |
Thm* P False  P | [or_false] |
Thm* False P  P | [false_or] |
Thm* P True  True | [or_true] |
Thm* True & P  P | [true_and] |
Thm* P  ( f:eq('a). P) | [add_eq_pred_qf] |
Thm* 'a:S, P:(eq('a) Prop).
Thm* ( f:eq('a). P(f))  P(<eq_pred:( x:'a. y:'a. x = y)>) | [eq_pred_unabstraction] |
Thm* P:(('a 'a  ) Prop).
Thm* P(<eq_pred:( x:'a. y:'a. x = y)>)  ( f:eq('a). P(f)) | [eq_pred_abstraction] |
Thm* p: .  p  p | [not_not] |
Thm* i,j: . i< j  j i | [not_lt_int] |
Thm* i,j: . i j  j< i | [not_le_int] |
Thm* p,q: . (p q)  p & q | [not_or] |
Thm* p,q: . (p & q)  p q | [not_and] |
Thm* T:S, P:(T Prop). ( x:T. P(x))  ( x:T. P(x)) | [not_all] |
Thm* T:S, P:(T Prop). ( x:T. P(x))  ( x:T. P(x)) | [not_exists] |
Thm* f,g:('a 'b). f = ( x:'a. g(x))  ( x:'a. f(x) = g(x)) | [ext_simp_2] |
Thm* f,g:('a 'b). ( x:'a. f(x)) = ( x:'a. g(x))  ( x:'a. f(x) = g(x)) | [ext_simp_1] |
Thm* false  False | [assert_of_bfalse] |
Thm* true  True | [assert_of_btrue] |
Thm* x,y: . (x = y)  (x  y) | [assert_of_bequal_bools] |
Thm* x,y: . x = y  (x  y) | [bequal_bools] |
Thm* x,y:T. (x = y)  x = y | [assert_of_bequal] |
Thm* false = true  False | [btrue_neq_bfalse_simp_2] |
Thm* true = false  False | [btrue_neq_bfalse_simp_1] |
Thm* P:(T  ). ( x:T. P(x))  ( x:T. P(x)) | [assert_of_bexists] |
Thm* P:(T  ). ( x:T. P(x))  ( x:T. P(x)) | [assert_of_ball] |
Thm* T:S, P,Q:(T Type). ( x:T. P(x)  Q(x))  (@x:T. P(x)) = (@x:T. Q(x)) | [choose_functionality_axiom] |
Thm* P:Prop{2}. ( P)  P | [prop_to_bool_2_char] |
Thm* ( P)  P | [prop_to_bool_char] |
Thm* A = B  A  B & B  A | [ext_axiom] |
Def type_definition('a;'b;P;rep)
Def == ( x',x'':'b. rep(x') = rep(x'') 'a  x' = x'')
Def == & ( x:'a. (P(x))  ( x':'b. x = rep(x'))) | [type_definition] |