| Some definitions of interest. |
|
ball | Def  x:T. P(x) ==  ( x:T. P(x)) |
| | Thm* T:Type, P:(T  ). ( x:T. P(x))  |
|
bexists | Def  x:T. P(x) ==  ( x:T. P(x)) |
| | Thm* T:Type, P:(T  ). ( x:T. P(x))  |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
bequal | Def x = y ==  (x = y T) |
| | Thm* T:Type, x,y:T. (x = y)  |
|
bnot | Def  b == if b false else true fi |
| | Thm* b: .  b  |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
stype | Def S == {T:Type| x:T. True } |
| | Thm* S Type{2} |