Definitions hol Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
ballDef x:TP(x) == (x:TP(x))
Thm* T:Type, P:(T). (x:TP(x))  
bexistsDef x:TP(x) == (x:TP(x))
Thm* T:Type, P:(T). (x:TP(x))  
assertDef b == if b True else False fi
Thm* b:b  Prop
bequalDef x = y == (x = y  T)
Thm* T:Type, x,y:T. (x = y 
bnotDef b == if b false else true fi
Thm* b:b  
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
notDef A == A  False
Thm* A:Prop. (A Prop
stypeDef S == {T:Type| x:T. True }
Thm* S  Type{2}

About:
boolbfalsebtrueifthenelseassertsetfunctionuniverseequal
memberpropimpliesandfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol Sections HOLlib Doc