Definitions hol Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
type_definitionDef type_definition('a;'b;P;rep)
Def == (x',x'':'brep(x') = rep(x'' 'a  x' = x'')
Def == & (x:'a(P(x))  (x':'bx = rep(x')))
Thm* 'a,'b:Type, P:('a), rep:('b'a). type_definition('a;'b;P;rep Prop
assertDef b == if b True else False fi
Thm* b:b  Prop
chooseDef @x:TP(x) == InjCase(lem({x:TP(x) }); xx, arb(T))
Thm* T:S, P:(TType). (@x:TP(x))  T
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
stypeDef S == {T:Type| x:T. True }
Thm* S  Type{2}

About:
boolifthenelseassertdecide
setapplyfunctionuniverseequalmemberprop
impliesandfalsetrueallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol Sections HOLlib Doc