Definitions hol Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
ballDef x:TP(x) == (x:TP(x))
Thm* T:Type, P:(T). (x:TP(x))  
bandDef pq == if p q else false fi
Thm* p,q:. (pq 
bequalDef x = y == (x = y  T)
Thm* T:Type, x,y:T. (x = y 
bexistsDef x:TP(x) == (x:TP(x))
Thm* T:Type, P:(T). (x:TP(x))  
bimpliesDef pq == p  q
Thm* p,q:pq  
pi1Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p A
pi2Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p B(1of(p))
stypeDef S == {T:Type| x:T. True }
Thm* S  Type{2}
tlambdaDef (x:Tb(x))(x) == b(x)

About:
spreadspreadproductboolbfalseifthenelsesetapply
functionuniverseequalmembertrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol Sections HOLlib Doc