Definitions hol Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
bequalDef x = y == (x = y  T)
Thm* T:Type, x,y:T. (x = y 
eq_pred_markerDef <eq_pred:x> == x
Thm* 'a:S. <eq_pred:(x:'ay:'ax = y)>  eq('a)
stypeDef S == {T:Type| x:T. True }
Thm* S  Type{2}
tlambdaDef (x:Tb(x))(x) == b(x)

About:
boolsetapplyuniverseequalmembertrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol Sections HOLlib Doc